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Abstract— Orthogonal frequency division multiplexing
(OFDM) systems may confront significant intercarrier inter-
ference (ICI) when applied in doubly selective channels. Fur-
thermore, the insufficient cyclic prefix (CP) leads to interblock
interference (IBI) which again results in ICI. These interferences
cause an early error floor in conventional receivers. In this
paper, we characterize the doubly selective channel using a
basis expansion model (BEM) and propose a frequency-domain
equalization approach to jointly combat the ICI and IBI. We
also derive a low-complexity scheme for the proposed approach.
Simulation results show the superior performance of the proposed
equalizer.
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I. INTRODUCTION

The combination of multiple-input multiple-output (MIMO)
technology and orthogonal frequency division multiplexing
(OFDM) is considered as a viable solution for future wireless
communication systems [1], [2]. MIMO techniques provide di-
versity, multiplexing, or antenna gain, thereby improve the er-
ror performance, the bit rate, or the signal-to-interference-plus-
noise ratio (SINR), respectively. On the other hand, OFDM
modulation combats frequency selective fading effectively by
dividing a wideband frequency selective fading channel into
parallel narrowband flat fading subchannels. OFDM systems
could maintain the orthogonality among subcarriers if the
channel response is not changed during the OFDM block. But
next generation wireless applications are expected to operate at
high carrier-frequencies, at high capacities, and at high levels
of mobility, resulting time- and frequency-selective, or doubly
selective fading. In this case, intercarrier interference (ICI)
occurs due to the loss of orthogonality. Moreover, interblock
interference (IBI) arises when the channel delay span is
larger than the cyclic prefix (CP), which again results in
ICI. Hence, equalization techniques are required to restore the
orthogonality and so to eliminate ICI/IBI.

There are many attempts in the literature for interference
cancellation and equalization of MIMO-OFDM systems. Au-
thors in [3], have designed ICI-mitigating block linear filters
based on SINR maximization. In [4], the received frequency-
domain signals are divided into subbands and then, joint soft
ICI cancellation and decoding is performed. Ref. [5] applies a
channel estimation method and uses the estimated parameters
to reproduce the interference components, which are then

iteratively cancelled from the received signal. A MIMO-
OFDM system without CP is considered in [6] and a two-
step interference cancellation and signal detection algorithm is
proposed. The algorithm is based on some structural properties
derived from shifting the received OFDM blocks. To solve
the mobility-induced ICI problem, a low-complexity zero-
forcing (ZF) approach is presented in [7]. The main idea is
to explore the special structure inherent in the ICI matrix
and apply Newton’s iteration method for matrix inversion.
However, most of the existing literature, including the above-
mentioned works, do not consider a fast time-varying (TV)
channel in conjunction with an insufficient CP.

In this paper, we consider a general case where the channel
varies within each OFDM block and the CP length is shorter
than the delay span of the channel. We propose a per-tone
frequency-domain equalizer to jointly mitigate the ICI and IBI
for MIMO-OFDM transmission system. The rest of this paper
is organized as follows. In Section II, we describe the system,
channel, and data models. We introduce the proposed equalizer
in Section III. We derive a low-complexity scheme for the
proposed equalizer in Section IV. In Section V, we show that
our framework unifies and extends many previously proposed
equalization methods. In Section VI, we present the simulation
results. Finally, we conclude the paper in Section VII.

Notation: We use upper (lower) case bold-face letters to
denote matrices (column vectors). Superscripts (·)T and (·)H

represent transpose and Hermitian, respectively. E{·} stands
for the expectation, ⊗ represents the Kronecker product and
diag{x} indicates a diagonal matrix with x as diagonal. We
use xn to indicate the nth element of vector x. We denote the
m×p all-zero matrix by Om×p. F stands for the unitary fast
Fourier transform (FFT) matrix and Im represents the m×m
identity matrix.

II. SYSTEM AND DATA MODEL

Consider a MIMO-OFDM system with Nt transmit and Nr

receive antennas as depicted in Figure 1. At the transmitter,
the input data stream is demultiplexed into Nt parallel sub-
streams and each substream is mapped into frequency-domain
quadrature phase-shift keying (QPSK) symbols and arranged
into OFDM blocks of length N . Each block is then converted
to the time domain by means of an N -point inverse fast
Fourier transform (IFFT) and extended with a CP of length
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Fig. 1. MIMO-OFDM system model

c. The time-domain blocks of each substream are then serially
transmitted over a doubly selective channel by one transmit
antenna at a rate of 1/T symbols/s. At the receiver, after
removing the CP, FFT demodulation as well as frequency-
domain equalization are performed to detect the transmitted
symbols. Let x

(t)
k [i] represent the QPSK symbol transmitted on

the kth subcarrier of the ith OFDM block in the tth substream.
The time-domain sequence u(t)[n] transmitted from the tth
antenna can then be written as

u(t)[n] =
1√
N

N−1∑
k=0

x
(t)
k [i]ej2πmk/N (1)

where i = �n/(N + c)� and m = n − i(N + c) − c.
We denote the impulse response of the channel character-

izing the link between the tth transmit antenna and the rth
receive antenna at time-index n and discrete time-delay θ
as g(r, t)[n; θ]. Using the baseband-equivalent description, the
received signal at the rth receive antenna at time-index n,
y(r)[n] is given by

y(r)[n] =
Nt∑
t=1

+∞∑
θ=0

g(r, t)[n; θ]u(t)[n − θ] + ξ(r)[n] (2)

where ξ(r)[n] is the additive noise which is assumed to be a
zero-mean white complex Gaussian process that is indepen-
dent of the transmitted sequence.

We use the complex exponential basis expansion model
(CE-BEM) [8], [9] to describe the doubly selective channel
g(r, t)[n; θ] for n ∈ { i(N + c) + c + d − L′ + 1, ... , (i +
1)(N + c) + d } where d is some synchronization (decision)
delay and L′ is a constant greater than or equal to the channel
order L. In CE-BEM, the doubly selective channel g(r, t)[n; θ]
is approximated as a TV finite impulse response (FIR) filter
h(r, t)[n; θ] where each tap is modeled as a weighted sum of
a few complex exponential basis functions. We express the lth
tap of the TV FIR channel between the tth transmit antenna
and the rth receive antenna at time-index n as

h(r, t)[n; l] =
Q/2∑

q=−Q/2

h
(r, t)
q,l ej2πqn/K (3)

where Q is the number of TV basis functions and K deter-
mines the CE-BEM frequency resolution, which is assumed
to be larger than or equal to the number of subcarriers. The
parameters Q and K should satisfy Q/(2KT ) ≥ fmax, where
fmax is the channel maximum Doppler spread. Here, we
assume that the CE-BEM frequency resolution K is an integer
multiple of the FFT size i.e., K = PN , where P is an integer
greater than or equal to 1. The CE-BEM coefficients

{
h

(r, t)
q, l

}
remain constant over a period of length (N + L)T and may
change from block to block.

Substituting (3) in (2), we can write the received sequence
at the rth receive antenna as

y(r)[n] =
Nt∑
t=1

Q/2∑
q=−Q/2

L∑
l=0

ej2πqn/Kh
(r, t)
q, l u(t)[n − l] + ξ(r)[n]

(4)
We use matrix representation to express the received

data block of length N + L′ at the rth receive antenna for
n ∈ {i(N + c) + c + d − L′ + 1, ..., (i + 1)(N + c) + d } as

y(r)[i] =

Nt∑
t=1

(
Q/2∑

q=−Q/2

Ωq[i]
[
O1,H(r, t)

q [i],O2

]
(I3 ⊗ P)(I3 ⊗ FH)

︸ ︷︷ ︸
G(r, t)[i]

×
⎡
⎣ x(t)[i − 1]

x(t)[i]
x(t)[i + 1]

⎤
⎦

︸ ︷︷ ︸
x̃(t)

) + ξ(r)[i] = G(r)[i]x̃ + ξ(r)[i] (5)

where i is the block index, y(r)[i] = [y(r)[i(N + c) +
c + d − L′ + 1], ... , y(r)[(i + 1)(N + c) + d]]T , Ωq[i] =
diag{[ej2πq(i(N+c)+c+d−L′+1)/K , ..., ej2πq((i+1)(N+c)+d)/K ]},
O1 = 0(N+L′)× (N+2c+d−L−L′) , O2 = 0(N+L′)× (N+c−d),

H(r, t)
q [i] is an (N + L′) × (N + L + L′) Toeplitz

matrix with the first column [h(r, t)
q, L [i] , 01×(N+L′−1)]

and the first row [h(r, t)
q, L [i] , ... , h

(r, t)
q, 0 [i] , 01× (N+L′−1)],



x(t)[i] = [x(t)
0 [i], ... , x

(t)
N−1[i]]

T , x̃ = [x̃(1)T , ... , x̃(Nt)T ]T ,
ξ(r)[i] = [ξ(r)[i(N + c)+ c+d−L′ +1], ... , ξ(r)[(i+1)(N +
c) + d]]T , G(r)[i] =

[
G(r, 1)[i], ...,G(r, Nt)[i]

]
and P is the

CP insertion matrix given by

P =
[

0c×(N−c) Ic

IN

]
Note that (5) is an extension of equation (22) in

[10] to the MIMO-OFDM case. Defining y[i] =
[y(1)T [i], ...,y(Nr)T [i]]T , G[i] = [G(1)T [i], ...,G(Nr)T [i]]T

and ξ[i] = [ξ(1)T [i], ... , ξ(Nr)T [i]]T , and using (5) we can
write the received data blocks (each of length N + L′) at all
receive antennas as

y[i] = G[i]x̃ + ξ[i] (6)

III. PER-TONE EQUALIZATION

In this section, we propose a per-tone frequency-domain
interference cancellation and equalization technique to simul-
taneously mitigate ICI and IBI. In addition, our proposed
equalization technique implicitly mitigates the co-antenna in-
terference, which is the interference caused by the signals from
multiple transmit antennas being received on the same receive
antenna. We assume a general case, where the channel changes
over an OFDM block and the channel delay span is greater
than the CP. We derive our technique directly in the frequency
domain.

In doubly selective fading, if the CP length is chosen to
be larger than the channel delay span, IBI is completely
eliminated and only ICI occurs due to channel time variations.
It has been shown in [11] and [12] that ICI power on each
subcarrier is originated from a few adjacent subcarriers. In
other words, the desired subcarrier would be affected by
only a few neighbors. Based on this fact, the QPSK symbol
transmitted on the kth subcarrier of the ith OFDM block
at the ath transmit antenna can be estimated using a linear
combination of the frequency components corresponding to
that subcarrier and its adjacent neighbors on different receive
antennas. Considering Q′ neighboring subcarriers, we express
this linear combination as

x̂
(a)
k [i] =

Nr∑
r=1

Q′/2∑
q′=−Q′/2

α
(r, a, k)
q′ [i]y(r)

f, k+q′ [i] (7)

where y
(r)
f, k+q′ [i] is the (k + q′)th frequency component of

the rth received signal, which is computed as y
(r)
f, k+q′ [i] =

F (k+q′)[y(r)[i(N+c)+c+d+1] , ... , y(r)[(i+1)(N+c)+d]]T

and F (k+q′) is the (k + q′)th row of the FFT matrix F . We
can obtain the coefficients α

(r, a, k)
q′ [i] using the mean-square

error (MSE) criterion. However, in the case of insufficient
CP and doubly selective fading, IBI is present in addition
to ICI and the above simple linear combination is no longer
a good estimate of x

(a)
k [i]. In other words, each frequency

component in (7) includes some IBI power and hence, the
linear combination of adjacent subcarriers will not lead to a

proper estimate of the QPSK symbol transmitted on the kth
subcarrier. To use (7) in the presence of both ICI and IBI, we
implicitly remove the IBI power from the FFT output samples.
To this end, we first perform L′ + 1 FFTs of size N on the
N + L′ samples of each received signal. This is equivalent
to performing a sliding FFT on each of the incoming signals.
Then, we obtain the IBI-free frequency components through a
linear combination of the sliding FFT outputs corresponding
to each subcarrier.

We substitute the so-called IBI-free frequency components
in (7) to extend it for joint ICI and IBI cancellation as follows:

x̂
(a)
k [i] =

Nr∑
r=1

Q′/2∑
q′=−Q′/2

α
(r, a, k)
q′ [i](β(r, a, k)T

q′ [i]F̃ (k+q′)
y(r)[i])

(8)

where β
(r, a, k)
q′ [i] = [β(r, a, k)

q′,0 [i], ... , β
(r, a, k)
q,L′ [i]]T and

F̃ (k+q′)
=

⎡
⎢⎢⎢⎢⎣

0 . . . 0 F (k+q′)

... 0 F (k+q′) 0

0 . .
.

0
...

F (k+q′) 0 . . . 0

⎤
⎥⎥⎥⎥⎦

which represents a sliding FFT operation. Defining
w(r, a, k)T

q′ [i] = α
(r, a, k)
q′ [i]β(r, a, k)T

q′ [i] we can write (8)
as

x̂
(a)
k [i] =

Nr∑
r=1

Q′/2∑
q′=−Q′/2

w(r, a, k)T
q′ [i]F̃ (k+q′)

y(r)[i] (9)

Equation (9) indicates that x̂
(a)
k [i] is estimated through a

linear combination of the sliding FFT output samples on the
kth subcarrier and its Q′ neighbors. This combination can be
viewed as a two-dimensional (time and frequency) interference
cancellation scheme.

Using matrix representation, (9) reduces to

x̂
(a)
k [i] = w(a, k)H [i](INr

⊗ F̃(k))y[i] (10)

where w(a, k)[i] = [w(1, a, k)T [i], ...,w(Nr , a, k)T [i]]H ,
w(r, a, k)[i] = [w(r, a, k)T

−Q′/2 [i], ...,w(r, a, k)T
Q′/2 [i]]T ,

w(r, a, k)
q′ [i] = [w(r, a, k)

q′, 0 [i], ..., w(r, a, k)
q′, L′ [i]]T and

F̃(k) = [F̃ (k−Q′/2)T
, ..., F̃ (k+Q′/2)T

]T .
From (10), we can see that each subcarrier corresponding to

each transmit substream or each transmit antenna, has its own
equalizer w(a, k)[i] and thus, the equalizer coefficients can be
optimized for each subcarrier (tone) separately. To obtain the
per-tone equalizer (PTEQ) w(a, k)[i] for the kth subcarrier of
the ath transmit antenna, we define the following MSE cost
function

J [i] = E
{∣∣∣x(a)

k [i] − w(a, k)H [i](INr
⊗ F̃(k))y[i]

∣∣∣2} (11)



Hence, the minimum MSE (MMSE) coefficients for the
kth subcarrier are obtained by solving ∂J [i]/∂w(a, k)[i] = 0
which reduces to

w(a, k)
MMSE[i] =(
(INr

⊗ F̃(k))(G[i]Rx̃GH [i] + Rξ)(INr
⊗ F̃(k)H)

)−1

× (INr
⊗ F̃(k))G[i]Rx̃e(k) (12)

where Rx̃ = E{x̃x̃H} = σ2
sI(3NtN), Rξ = σ2

ξINr(N+L′), σ2
s

and σ2
ξ are the QPSK symbol power and the noise variance,

respectively and e(k) is the (3NtN) × 1 unit vector with a 1
in the position 3N(a − 1) + N + k. Figure 2 illustrates the
proposed per-tone equalizer for the kth subcarrier of the ath
transmit antenna. As shown in this figure, one sliding FFT is
needed per receive antenna to compute (10).

IV. COMPLEXITY REDUCTION

In section 3, we showed that to estimate the transmitted
symbol on each subcarrier, the proposed PTEQ requires Nr

sliding FFTs. In this section, we use a procedure similar to
that of [13] to reduce the complexity of the proposed PTEQ.
This procedure replaces each sliding FFT with one full FFT
and the remaining FFTs are compensated for by L′ difference
terms based on the following property:

F̃ (k+q′)
y(r)[i] = T(k+q′)

[
y
(r)
f, k+q′ [i]

Δy(r)[i]

]
(13)

where y
(r)
f, k+q′ [i] is the FFT output sample on the (k + q′)th

subcarrier at the rth receive antenna, T(k+q′) is an (L′ +1)×
(L′ + 1) lower triangular Toepolitz matrix given by

T(k+q′) =

⎡
⎢⎢⎢⎢⎣

1 0 · · ·
ϑ(k+q′) . . .

. . .
...

. . .
. . .

ϑ(k+q′)L′
. . . ϑ(k+q′)

0
...
0
1

⎤
⎥⎥⎥⎥⎦

with ϑ = e−j2π/N , and the difference terms Δy(r)[i] are
Δy(r)[i] = [y(r)[i(N +c)+c+d]−y(r)[(i+1)(N +c)+d], ...,
y(r)[i(N+c)+c+d−L′+1]−y(r)[(i+1)(N+c)+d−L′+1]]T .

We substitute (13) in (9) to obtain

x̂
(a)
k [i] =

Nr∑
r=1

Q′/2∑
q′=−Q′/2

w(r, a, k)T
q′ [i]T(k+q′)

[
y
(r)
f, k+q′ [i]

Δy(r)[i]

]
(14)

Introducing υ
(r, a, k)T
q′ [i] = w(r, a, k)T

q′ [i]T(k+q′),

γ
(r, a, k)
1 [i] = [υ(r, a, k)

−Q′/2,0[i], ..., υ
(r, a, k)
Q′/2,0 [i]]T and

γ
(r, a, k)
2 [i] =

[
Q′/2∑

q′=−Q′/2

υ
(r, a, k)
q′, 1 [i], ...,

Q′/2∑
q′=−Q′/2

υ
(r, a, k)
q′, L′ [i]

]T

we rewrite (14) as follows

x̂
(a)
k [i] =

Nr∑
r=1

[γ(r, a, k)T
1 [i],γ(r, a, k)T

2 [i]] ×

⎡
⎢⎢⎢⎢⎣

y
(r)
f, k−Q′/2[i]

...

y
(r)
f, k+Q′/2[i]
Δy(r)[i]

⎤
⎥⎥⎥⎥⎦

=
Nr∑
r=1

v(r, a, k)T [i]×

⎡
⎢⎢⎢⎣

01×L′ F (k−Q′/2)

...
...

01×L′ F (k+Q′/2)

ĪL′ 0L′×(N−L′) −ĪL′

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
F̂(k)

y(r)[i]

(15)

where v(r, a, k)[i] = [γ(r, a, k)T
1 [i],γ(r, a, k)T

2 [i]]T and ĪL′ is
the anti-diagonal identity matrix of size L′ × L′. Defining
v(a, k)[i] = [v(1, a, k)T [i] , ... ,v(Nr, a, k)T [i]]H , (15) can fi-
nally be written as

x̂
(a)
k [i] = v(a, k)H [i](INr

⊗ F̂(k))y[i] (16)

Similar to (11), we can obtain the MMSE PTEQ v(a, k)[i]
for the kth subcarrier on the ath transmit antenna by minimiz-
ing the following cost function

J [i] = E
{∣∣∣x(a)

k [i] − v(a, k)H [i]
(
INr

⊗ F̂(k)
)
y[i]

∣∣∣2} (17)

Figure 3 shows the derived low-complexity PTEQ scheme
for the kth subcarrier of the ath transmit antenna.

V. UNIFYING FRAMEWORK

In this section, we illustrate that our proposed per-tone
equalizer unifies and extends several previously proposed
frequency-domain equalization approaches as follows.

(i) SISO-OFDM over frequency selective channels (Q = 0)
• c ≥ L and L′ = 0: the proposed PTEQ reduces to the

one-tap frequency-domain equalizer (FEQ) as in [14];
• c < L and L′ �= 0: the proposed PTEQ reduces to

the per-tone equalizer proposed for discrete multi-tone
transmission (DMT)-based systems in [15].

(ii) SISO-OFDM over doubly selective channels (Q �= 0)
• c ≥ L, L′ = 0, andP = 1: the proposed PTEQ

boils down to the FEQs proposed in [12] and [16]; and
corresponds to the PTEQ proposed in [17].

(iii) SIMO-OFDM over doubly selective channels (Q �= 0)
• c < L, L′ �= 0, and P = 1: the proposed PTEQ reduces

to the FEQ proposed in [10];
• c < L, L′ �= 0 and P ≥ 1: the proposed PTEQ reduces

to the FEQ proposed in [18].
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VI. SIMULATION RESULTS

We now demonstrate the performance of the proposed
equalizer through computer simulations. We consider a
MIMO-OFDM system with Nt = 2 transmit antennas and
Nr = 4 receive antennas. The doubly selective channel is of
order L = 6 with a maximum Doppler spread of fmax =
100Hz. The channel taps are generated as independent iden-
tically distributed (i.i.d.) random variables and correlated in
time with a correlation function according to Jakes’ model
E{h(r1, t1)[n1; l1]h(r2, t2)∗[n2; l2]} = σ2

hJ0(2πfmaxT (n1 −
n2))δ[l1 − l2]δ[r1 − r2]δ[t1 − t2], where J0 is the zero-order
Bessel function of the first kind and σ2

h represents the variance
of the channel gain. The number of subcarriers in each OFDM
block is N = 128, the CP length is c = 3 and the sampling
time is T = 50μsec.

We approximate the simulated channel using the CE-BEM.
The CE-BEM resolution is determined by K = PN where P
is chosen as P = 1, 2 and the number of complex exponentials
is Q = 4. We consider L′ = 8, Q′ = 8 and the delay d = 3.
We use both the proposed PTEQ and the one-tap MMSE FEQ
to equalize the true (simulated) Jakes’ channel. The one-tap
equalizer used here is an extension of the one-tap FEQ in [14]
for SISO-OFDM. The difference between this equalizer and
the conventional one-tap equalizer is that it is designed by
minimizing the MSE cost function at the equalizer output.

Figure 4 illustrates the simulation results for bit-error-rate
(BER) vs. signal-to-noise ratio (SNR). We define the SNR as
SNR = σ2

h(L + 1)σ2
s/σ2

ξ . As shown in this figure, the one-
tap MMSE FEQ cannot mitigate the interference well. For
CE-BEM resolution P = 1, the proposed PTEQ considerably
outperforms the one-tap equalizer, however, it suffers from an
early error floor at BER = 2.8× 10−3 and SNR = 18 dB. We
also see in this figure that the performance of the proposed
method is significantly improved when P = 2.
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Fig. 4. BER vs. SNR for MIMO-OFDM with Nt = 2 and Nr = 4

VII. CONCLUSION

We proposed a per-tone equalization approach for MIMO-
OFDM over doubly selective channels, when an insufficient
CP is used. The proposed equalizer is directly designed in the
frequency domain and can be viewed as a two-dimensional
(time and frequency) interference cancellation scheme. More-
over, it unifies many existing equalization approaches. Sim-
ulation results show that increasing the CE-BEM frequency
resolution to twice that of the FFT, leads to significant perfor-
mance improvement.
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